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Abstract

In this article several practical applications of algebraic topology
are presented. After a short technical review of the necessary theory
applications to sensor networks are presented. A very short reference
of applications to data analysis follows.
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1 Introduction

For many years algebraic topology has been considered as an abstract math-
ematical field with none or few practical applications.However many astract
mathematical ideas have found unexpected applications in real-life prob-
lems. This is also the case with algebraic topology during the past couple
of years. Theories and techniques created by mathematicians in order to
answer abstract problems are being used to answer problems such as pro-
tein docking, image analysis, data analysis and space coverage by sensor
networks.

This article focuses, mainly, on the last two cases i.e. applications of al-
gebraic topology to sensor networks and data analysis. A brief introduction
to the necessary mathematical background is given in the beginning of the
article. In the second section applications to sensor networks are presented
while in the third section approaches related to data analysis are discussed.

2 Mathematical background

2.1 Algebraic homology

In this section we give a short introduction to Homology theory. We begin
with the definition of a (simplicial) complex.
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Figure 1: A simple example of a simplicial complex

Definition 2.1. Let V be a finite set. A collection K of subsets of V is
called a complex if α ∈ K and β ⊆ α implies β ∈ K.

A set in C with k + 1 elements is called a k-simplex and we define its
dimension to be k. If β ⊆ α then we call β a face of α. We call β a proper
face if in addition β 6= α.

In this article complexes will, mostly, refer to geometric objects. A 0-
simplex will be a point, a 1-simplex an arc, a 2-simplex a triangle and so on.
In figure 1 there is an example of a complex which is consisted of a triangle
{u0, u1, u2} and a line {u2, u3} (and of course all their faces).

Given a complex K, we define Cn(K) to be the vector space whose base
is the set of n-simplices of K with coefficients over a field. The base element
that corresponds to the n-simplex {u0, . . . , un} is denoted by [u0, . . . , un].

For example for the complex of figure 1 we have that C2(K) is a one
dimensional vector space with base [u0, u1, u2] while C1(K) is a four dimen-
sional vector space with base [u0, u1], [u0, u2], [u1, u2], [u3, u4]. For each n we
define the boundary operator ϑn : Cn(K)→ Cn−1(K) to be the linear map
with

ϑ([u0, . . . , un]) =
n∑
i=0

(−1)i[u0, . . . , ûi, . . . , un]

where ûi means that ui is deleted. A straight forward calculation [8, p. 105]
verifies that ϑn−1 ◦ ϑn = 0. Hence we have a chain complex

C•(K) : · · · ϑn+2−→ Cn+1(K)
ϑn+1−→ Cn(K)

ϑn−→ Cn−1(K)
ϑn−1−→ · · ·

Definition 2.2. Let C•(K) be a chain complex as above. The n-th Homology
group Hn(K) is the group quotient Kerϑn/Imϑn+1. The rank of the n-th
homology group is called the n-th betti number.
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Figure 2: Four sets in the plane and their corresponding nerve

Let K be a complex and A a subcomplex contained in it. Then we can
construct the quotient K/A. Geometrically K/A is obtained from K by
collapsing A to a single point. The homology of K/A is called the relative
homology of K with respect to A and is symbolized by H•(K,A).

Finally, for our purposes we will require the following two constructions.

Definition 2.3. [3, 5] Let S be a set of sets. We define the nerve NrvS of
S to be the set of subsets of S with no empty intersection:

NrvS = {X ⊆ S :
⋂
X 6= ∅}

The nerve is always a complex. In figure 2 an example with four sets
in R2 is given and on the right hand side the corresponding complex is
depicted. If S contains disks, then the corresponding complex is called the
Čech complex.

Definition 2.4. [3] Let V = {v1, . . . , vn} be a set of points of a metric
space (X, d). Then for a real number ε > 0 we define the Rips (or Rips-
Vietoris) complex to be the complex whose k-simplices are {vi0 , . . . , vik} with
d(vij , vil) ≤ ε.

2.2 Euler integral

In this subsection we define the Euler integral. Initially, we need to define
the Euler characteristic.

Definition 2.5. Let X be a complex, the Euler characteristic χ(X) is the
alternating sum

∑
n(−1)ncn where cn is the number of n-simplices.
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Figure 3: The Rips complexes of four points on the vertices of a unit square.
On the left for ε in [0, 1), in the middle for values in [1,

√
2) and on the right

for values in [
√

2,+∞)

The definition generalizes the well-known Euler characteristic in two di-
mensional complexes. The relation of the Euler characteristic to the n-th
homology group is given by the following theorem.

Theorem 2.6. [8, p. 146] Let X be a complex, then

χ(X) =
∑
n

(−1)nrankHn(X).

From the above theorem it is clear that the Euler characteristic is a
homotopy invariant. Hence it can be defined for many topological spaces.
For example:

1. for a finite set X the Euler characteristic equals the number of points
in X,

2. χ(X)=vertices-edges+faces=2 for plane graphs,

3. for a subset X of R2 with n holes χ(X) = 1− n,

4. χ(X) = 2− 2g for an orientable surface X of genus g.

A simple argument based on the Mayer-Vietoris sequence [8] gives that
for two complexes A,B

χ(A ∪B) = χ(A) + χ(B)− χ(A ∩B).

This fact allows us to set up an integration theory using Euler characteristic.

Definition 2.7. [1, 2] Let X be a complex and CF (X) the abelian group of
functions from X to Z with generators the characteristic functions 1σ, where
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σ is a closed simplex of X. Then for a function h =
∑

α cα1α ∈ CF (X) the
Euler integral with respect to the Euler characteristic is defined to be∫

X
hdχ =

∑
α

cα.

3 Homology and sensor networks

3.1 Hole detection

Perhaps the most important question about a sensor network is whether
it covers an entire area or not. Furthermore if there exists a hole in the
coverage we should have ways to detect it. This problem is easily solved
if the location of each sensor of the network is known. On the other hand
there exist scenarios where our sensors, or at least most of them, do not
have any information about their location. This might be due to the fact
that our sensors are too small to carry positioning systems or because these
systems are too expensive. Maybe in the near future swarms of low cost
sensors will be spread in an area for collecting data. For example Smart
Dust was a research proposal [11] to DARPA to build wireless sensor nodes
with a volume of one cubic millimeter. The project led to a working mote
smaller than a grain of rice.

Figure 4: A smart dust - like network whose sensor nodes are delivered by
a helicopter and data received by a handheld device [11].
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Figure 5: Left: a simple sensor network of coverage disks. Right: the
corresponding Čech complex. Note that the triangle is not filled since the
three circles on the left do not have a common intersection

The first step in using homology is to create a complex from the sensor
network. Assuming that each sensor covers a disk of radius rc, and of course
that it can detect the presence and the identity of any other sensors in that
disk, we can create the Čech complex C of the coverage disks (see fig. 5).
For the Čech complex of a set {Uα} of sets the following theorem [12, 13]
holds:

Theorem 3.1. Let {Uα} be a collection of disks and C the corresponding
Čech complex, then the union

⋃
α Uα has the homotopy type of C.

Thus, if H1(C) 6= 0 we can deduce that our network contains a hole.
Unfortunately, there exists no way of constructing the Čech complex for a
sensor network. That is the main reason for introducing the Rips complex.
Although the Rips complex does not capture the topology of the cover,
it gives a good approximation. Furthermore, the Čech complex is nested
between two Rips complexes as described in the following theorem [3, 13]:

Theorem 3.2. Let X be a set of points in R2 and Cε the Čech complex
of the cover of X by balls of radius ε/2 and Rε′ , Rε the Rips complexes for
constants ε′, ε. Then Rε′ ⊆ Cε ⊆ Rε whenever ε

ε′ ≥
2√
3
.

Remark 3.3. For ε′ < ε we have Rε′ ⊆ Rε and hence the inclusion maps
i : Rε′ → Rε defines a map between homology groups i∗ : H•(Rε′)→ H•(Rε).
The study of these maps will prove useful later in 3.4. It is the beginning of
a promising theory called persistent homology.
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In [4] a divide and conquer method is introduced that utilizes the ho-
mology of the Rips complex to detect not only the presence of holes in the
network’s coverage but also their location.

As noted above, there exist cases where the Rips complex fails to de-
tect the holes in the network’s coverage. This problem can be resolved by
strengthening our assumptions. In particular, suppose that the following
assumptions hold:

A1. Sensors broadcast their unique IDs. Each sensor can detect the iden-
tity of any sensor within a range rs via a strong signal and within a
larger range rw via a weak signal.

A2. Each sensor covers a disk of radius rc, where rc ≥ rb/
√

3.

A3. rc, rs, rw satisfy rc ≥ rs
√

1/3 and rw ≥ rs
√

13/3.

A4. The sensors are placed on a bounded subset D of the plane. Moreover
sensors can detect the presence(but not the location or direction) of
the boundary within a fixed fence detection radius rf ≥ 0. ϑD is
connected and piecewise linear.

A5. The restricted domain D − C is connected, where C = {x ∈ D :
||x− ϑD|| ≤ rf + 1

2rs}.

A6. The curve(s) {x ∈ D : ||x−ϑD|| = rf} have internal injectivity radius
at least rs/

√
2 and external injectivity radius at least rs.

In [13] the following theorem is proved:

Theorem 3.4. For a network satisfying A1-A6 let Fs, Fw be the subcom-
plexes of Rs, Rw respectively whose vertices correspond to the sensors that lie
within the fence detection radius. The region D−C is contained in the cover
if there is a homology class in H2(Rs, Fs) which is nonzero in H2(Rw, Fw).

3.2 Target enumeration

In this section we outline the use of the Euler integral to the target enumer-
ation problem of a sensor network. In particular, given a network of sensors
which are only able to detect the presence of an other sensor or of certain
”targets” within a disk of radius rc and where relaying of messages is done
between sensors within distance rc, we want to enumerate the targets in the
network’s coverage. It should be emphasized that each sensor counts only
the number of targets in it’s covering disk. It can not identify the targets,
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detect the direction of the other sensors or the targets. Hence, if a target is
contained in the intersection of the covers of two sensors it is counted twice.

Assuming that the sensors cover an entire subspace X ofR2 and for every
sensor α the subset Uα of X containing all the sensors to which detect the
sensors, then we can define a function h : X → N, where h(x) is the number
of targets α which can be detected by the sensor located at x (h(x) = #{α :
x ∈ Uα}). Then the following theorem states that we can use the Euler
integral to enumerate the targets in X.

Theorem 3.5. [2, 1] Given h : X → N the counting function of compact
target supports in X satisfying χ(Uα) = n 6= 0 for all targets α. Then
#α = 1

n

∫
X hdχ.

Naturally, the assumption that at every point of X a sensor is located
is not realistic. In practice, we assume that the sensors are located on the
vertices of a triangulation of X. In that case the values of h are known only
for the vertices and we can integrate the piecewise linear interpolation of h
[2].

3.3 Further applications

We should point out that there more applications of algebraic homology to
sensor networks. Let the following assumptions hold:

B1. the sensors broadcast their unique IDs and each node can detect the
ID of any node within radius rb,

B2. sensors cover a disk of radius rc ≥ rb
√

3,

B3. sensors lie in a compact connected subset of the plane whose boundary
is connected and piece-wise linear,

B4. every sensor on the boundary knows the IDs of its two adjacent bound-
ary nodes which both lie within distance rb.

Then [12] the sensor cover contains D if there exists [a] ∈ H2(R,ϑD) such
that ϑa 6= 0. This fact enables us to detect reductant sensors. (The non-
reductant sensors are part of a minimal generator of H2(R,ϑD)). Thus, the
network can for example, conserve energy by placing in sleeping mode the
reductant sensors.

Another example [12] has to do with the problem of determining whether
an evader can avoid detection in a network whose sensors are on the move or
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come online and offline at various times. Under some reasonable assumptions
there exists an affirmative answer to this problem.

Finally, in [4] a method for detecting wormhole attacks1 on a network is
presented.

4 Data analysis

4.1 General methods - A first approach

Another unexpected application of topology is to data analysis. The main
advantage of using topological methods is that these methods are noise tol-
erant.

Quite naturally the first application is to use topology to classify different
data sets. A dataset may be viewed as a set of points of some n-dimensional
real space Rn (this set is often called cloud set). From the dataset we
can construct a complex (i.e. a Rips complex) and calculate it’s homology
groups and the corresponding betti numbers. It is then possible to try
to classify different datasets by examining their respective betti numbers.
Several researchers have conducted tests attempting to classify data coming
from a great variety of sources, from images to texts [3, 6, 14, 16].

4.2 More sophisticated techniques

The study of the evolution of the homology of a Rips complex Rε obtained
from a dataset for various values of ε can be used in various applications. For
example, it can be used for identifying the main topological characteristics
of an object that is sampled. The main topological characteristics are those
that are persistent while ε changes. The persistence of homology has several
practical applications from protein docking and image analysis [5, 15] to fine
tuning machine learning algorithms [10].

5 Conclusion

The authors would like to point out that this is a very short exposition.
Many details are omitted while a large number of applications is left out.
We only hope that this article will motivate the readers to search for more
detailed information. The field is relatively new and will certainly welcome

1In this kind of attack involving two malicious/infected sensors, a signal received by
one sensor is transmitted over a low-latency link and replayed by the other. If the two
sensors are located far apart this can cause several problems to the network [9]
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researchers from diverse backgrounds ranging from mathematics to software
engineering.
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